Function Dump/Mathematical Functions: Difference between revisions
>NXTBoy →math.tanh (x): lrn2CFrame |
>Anaminus reverting examples |
||
Line 1: | Line 1: | ||
{{CatUp|Function Dump}} | {{CatUp|Function Dump}} | ||
=Mathematical Functions= | ==Mathematical Functions== | ||
This library is an interface to the standard C math library. It provides all its functions inside the table math. | This library is an interface to the standard C math library. It provides all its functions inside the table math. | ||
===math.abs (x)=== | ===math.abs (x)=== | ||
Returns the absolute value of x. | Returns the absolute value of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.abs(-5)) | |||
Will result in: | |||
5 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.acos (x)=== | ===math.acos (x)=== | ||
Returns the arc cosine of x (in radians). | Returns the arc cosine of x (in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.acos(-1)) | |||
Will result in: | |||
3.1415926535898 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.asin (x)=== | ===math.asin (x)=== | ||
Returns the arc sine of x (in radians). | Returns the arc sine of x (in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.asin(0)) | |||
Will result in: | |||
0 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.atan (x)=== | ===math.atan (x)=== | ||
Returns the arc tangent of x (in radians). | Returns the arc tangent of x (in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.atan(math.pi)) | |||
Will result in: | |||
1.2626272556789 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.atan2 (y, x)=== | ===math.atan2 (y, x)=== | ||
Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the quadrant of the result. (It also handles correctly the case of x being zero.) | Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the quadrant of the result. (It also handles correctly the case of x being zero.) | ||
===math.ceil (x)=== | ===math.ceil (x)=== | ||
Returns the smallest integer larger than or equal to x. Essentially, rounds a number to the next highest value | Returns the smallest integer larger than or equal to x. Essentially, rounds a number to the next highest value | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
z=math.ceil (4.2) | |||
print(z) | |||
Will result in: | |||
5 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.cos (x)=== | ===math.cos (x)=== | ||
Returns the cosine of x (assumed to be in radians). | Returns the cosine of x (assumed to be in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.cos (1)) | |||
Will result in: | |||
0.54030230586814 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.cosh (x)=== | ===math.cosh (x)=== | ||
Returns the hyperbolic cosine of x. | Returns the hyperbolic cosine of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.cosh (1)) | |||
Will result in: | |||
1.5430806348152 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.deg (x)=== | ===math.deg (x)=== | ||
Returns the angle x (given in radians) in degrees. | Returns the angle x (given in radians) in degrees. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.deg (1.5707963267948966192313216916398)) | |||
Will result in: | Will result in: | ||
Line 169: | Line 106: | ||
===math.exp (x)=== | ===math.exp (x)=== | ||
Returns the the value e^x. | Returns the the value e^x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.exp (1)) | |||
Will result in: | |||
2.718281828459 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.floor (x)=== | ===math.floor (x)=== | ||
Returns the largest integer smaller than or equal to x. | Returns the largest integer smaller than or equal to x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
z=math.ceil (4.2) | |||
print(z) | |||
Will result in: | |||
4 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.fmod (x, y)=== | ===math.fmod (x, y)=== | ||
Returns the remainder of the division of x by y that rounds the quotient towards zero. | Returns the remainder of the division of x by y that rounds the quotient towards zero. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.fmod (10, 3)) | |||
Will result in: | |||
1 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.frexp (x)=== | ===math.frexp (x)=== | ||
Returns m and e such that x = m*2^e, e is an integer and the absolute value of m is in the range [0.5, 1) (or zero when x is zero). | Returns m and e such that x = m*2^e, e is an integer and the absolute value of m is in the range [0.5, 1) (or zero when x is zero). | ||
Line 243: | Line 161: | ||
===math.huge=== | ===math.huge=== | ||
The value HUGE_VAL, a value larger than or equal to any other numerical value. | The value HUGE_VAL, a value larger than or equal to any other numerical value. | ||
Line 257: | Line 173: | ||
===math.ldexp (m, e)=== | ===math.ldexp (m, e)=== | ||
Returns m*2^e (e should be an integer). | Returns m*2^e (e should be an integer). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.ldexp (2, 6)) | |||
Will result in: | |||
128 (i.e., (2*(2^6)) | |||
</pre> | </pre> | ||
}} | }} | ||
Line 276: | Line 186: | ||
===math.log (x)=== | ===math.log (x)=== | ||
Returns the natural logarithm of x. | Returns the natural logarithm of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.log (2.71828182845904523536)) | |||
Will result in: | |||
1 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.log10 (x)=== | ===math.log10 (x)=== | ||
Returns the base-10 logarithm of x. | Returns the base-10 logarithm of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.log10 (100)) | |||
Will result in: | |||
2 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.max (x, ···)=== | ===math.max (x, ···)=== | ||
Returns the maximum value among its arguments. | Returns the maximum value among its arguments. | ||
Line 325: | Line 221: | ||
===math.min (x, ···)=== | ===math.min (x, ···)=== | ||
Returns the minimum value among its arguments. | Returns the minimum value among its arguments. | ||
Line 339: | Line 233: | ||
===math.modf (x)=== | ===math.modf (x)=== | ||
Returns two numbers, the integral part of x and the fractional part of x. | Returns two numbers, the integral part of x and the fractional part of x. | ||
Line 353: | Line 245: | ||
===math.pi=== | ===math.pi=== | ||
The value of pi. Pi is a mathematics term (not the baked good) that represents a very specific number. | The value of pi. Pi is a mathematics term (not the baked good) that represents a very specific number. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.pi) | |||
Will result in: | Will result in: | ||
Line 368: | Line 257: | ||
===math.pow (x, y)=== | ===math.pow (x, y)=== | ||
Returns x^y. (You can also use the expression x^y to compute this value.) | Returns x^y. (You can also use the expression x^y to compute this value.) | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.pow (4, 2)) | |||
Will result in: | |||
16 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.rad (x)=== | ===math.rad (x)=== | ||
Returns the angle x (given in degrees) in radians. | Returns the angle x (given in degrees) in radians. | ||
Line 400: | Line 281: | ||
===math.random ([m [, n]])=== | ===math.random ([m [, n]])=== | ||
This function can be called 3 ways: | This function can be called 3 ways: | ||
math.random(''min'',''max'') -- returns an [[Integer]] ''min''-''max'' | math.random(''min'',''max'') -- returns an [[Integer]] ''min''-''max'' | ||
Line 428: | Line 308: | ||
}} | }} | ||
If second number is less than first (or only number is less than 1), you'll get: | If the second number is less than first (or only number is less than 1), you'll get: | ||
<font style="color:red">bad argument #n to 'random' (interval is empty)</font> | <font style="color:red">bad argument #n to 'random' (interval is empty)</font> | ||
Line 434: | Line 314: | ||
===math.randomseed (x)=== | ===math.randomseed (x)=== | ||
Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of numbers. | Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of numbers. | ||
===math.sin (x)=== | ===math.sin (x)=== | ||
Returns the sine of x (assumed to be in radians). | Returns the sine of x (assumed to be in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.sin (1.5707963267948966192313216916398)) | |||
Will result in: | |||
1 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.sinh (x)=== | ===math.sinh (x)=== | ||
Returns the hyperbolic sine of x. | Returns the hyperbolic sine of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.sinh (0)) | |||
Will result in: | |||
0 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.sqrt (x)=== | ===math.sqrt (x)=== | ||
Returns the square root of x. (You can also use the expression x^0.5 to compute this value.) | Returns the square root of x. (You can also use the expression x^0.5 to compute this value.) | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
z=math.sqrt (16) | |||
print(z) | |||
Will result in: | |||
4 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.tan (x)=== | ===math.tan (x)=== | ||
Returns the tangent of x (assumed to be in radians). | Returns the tangent of x (assumed to be in radians). | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.tan (1)) | |||
Will result in: | |||
1.5574077246549 | |||
</pre> | </pre> | ||
}} | }} | ||
===math.tanh (x)=== | ===math.tanh (x)=== | ||
Returns the hyperbolic tangent of x. | Returns the hyperbolic tangent of x. | ||
{{Example| | {{Example| | ||
<pre> | <pre> | ||
print(math.tanh (1)) | |||
Will result in: | |||
0.76159415595576 | |||
</pre> | </pre> | ||
}} | }} |
Revision as of 10:58, 2 April 2011
Mathematical Functions
This library is an interface to the standard C math library. It provides all its functions inside the table math.
math.abs (x)
Returns the absolute value of x.
print(math.abs(-5)) Will result in: 5
math.acos (x)
Returns the arc cosine of x (in radians).
print(math.acos(-1)) Will result in: 3.1415926535898
math.asin (x)
Returns the arc sine of x (in radians).
print(math.asin(0)) Will result in: 0
math.atan (x)
Returns the arc tangent of x (in radians).
print(math.atan(math.pi)) Will result in: 1.2626272556789
math.atan2 (y, x)
Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the quadrant of the result. (It also handles correctly the case of x being zero.)
math.ceil (x)
Returns the smallest integer larger than or equal to x. Essentially, rounds a number to the next highest value
z=math.ceil (4.2) print(z) Will result in: 5
math.cos (x)
Returns the cosine of x (assumed to be in radians).
print(math.cos (1)) Will result in: 0.54030230586814
math.cosh (x)
Returns the hyperbolic cosine of x.
print(math.cosh (1)) Will result in: 1.5430806348152
math.deg (x)
Returns the angle x (given in radians) in degrees.
print(math.deg (1.5707963267948966192313216916398)) Will result in: 90
math.exp (x)
Returns the the value e^x.
print(math.exp (1)) Will result in: 2.718281828459
math.floor (x)
Returns the largest integer smaller than or equal to x.
z=math.ceil (4.2) print(z) Will result in: 4
math.fmod (x, y)
Returns the remainder of the division of x by y that rounds the quotient towards zero.
print(math.fmod (10, 3)) Will result in: 1
math.frexp (x)
Returns m and e such that x = m*2^e, e is an integer and the absolute value of m is in the range [0.5, 1) (or zero when x is zero).
print(math.frexp (0)) Will result in: 0 0
print(math.frexp (4)) Will result in: 0.5 3 -- (2^3/2=4)
math.huge
The value HUGE_VAL, a value larger than or equal to any other numerical value.
print(math.huge) Will result in: 1.#INF
math.ldexp (m, e)
Returns m*2^e (e should be an integer).
print(math.ldexp (2, 6)) Will result in: 128 (i.e., (2*(2^6))
math.log (x)
Returns the natural logarithm of x.
print(math.log (2.71828182845904523536)) Will result in: 1
math.log10 (x)
Returns the base-10 logarithm of x.
print(math.log10 (100)) Will result in: 2
math.max (x, ···)
Returns the maximum value among its arguments.
print(math.max (1, 2, 3, 4, 5, 6, 7)) Will result in: 7
math.min (x, ···)
Returns the minimum value among its arguments.
print(math.min (1, 2, 3, 4, 5, 6, 7)) Will result in: 1
math.modf (x)
Returns two numbers, the integral part of x and the fractional part of x.
print(math.modf (2.5)) Will result in: 2 0.5
math.pi
The value of pi. Pi is a mathematics term (not the baked good) that represents a very specific number.
print(math.pi) Will result in: 3.1415926535898
math.pow (x, y)
Returns x^y. (You can also use the expression x^y to compute this value.)
print(math.pow (4, 2)) Will result in: 16
math.rad (x)
Returns the angle x (given in degrees) in radians.
print(math.rad (90)) Will result in: 1.5707963267949 (Which is pi/2)
math.random ([m [, n]])
This function can be called 3 ways:
math.random(min,max) -- returns an Integer min-max
local str = "" for i = 1,10 do local num = math.random(33,126) str = str .. string.char(num) end print(str) -- random string length 10
math.random() -- returns a Number value 0-1
local color = Color3.new( math.random(), math.random(), math.random() ) print(color) -- random color3
math.random(max) -- returns an Integer 1-max
local list = Workspace:GetChildren() print( list[math.random(#list)] ) -- random item from list
If the second number is less than first (or only number is less than 1), you'll get:
bad argument #n to 'random' (interval is empty)
This function is an interface to the simple pseudo-random generator function rand provided by ANSI C. (No guarantees can be given for its statistical properties.)
math.randomseed (x)
Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of numbers.
math.sin (x)
Returns the sine of x (assumed to be in radians).
print(math.sin (1.5707963267948966192313216916398)) Will result in: 1
math.sinh (x)
Returns the hyperbolic sine of x.
print(math.sinh (0)) Will result in: 0
math.sqrt (x)
Returns the square root of x. (You can also use the expression x^0.5 to compute this value.)
z=math.sqrt (16) print(z) Will result in: 4
math.tan (x)
Returns the tangent of x (assumed to be in radians).
print(math.tan (1)) Will result in: 1.5574077246549
math.tanh (x)
Returns the hyperbolic tangent of x.
print(math.tanh (1)) Will result in: 0.76159415595576